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LETTER TO THE EDITOR

Hidden integrability of a quantum system with non-local
coupling

Valery I Rupasov†‡ and M Singh§
Centre for Chemical Physics and Department of Physics, University of Western Ontario, London,
Ontario, Canada N6A 3K7

Received 17 January 1996

Abstract. A system of polaritons interacting with a two-level atom placed within a frequency
dispersive medium is proved to be integrable, despite a non-local effective polariton–polariton
coupling. The two-polariton factorization of a many-polariton scattering process is hidden and
is manifested only in the limit of large interpolariton separations.

The standard Dicke and Bloch–Maxwell models [1], which describe a system of photons
coupled to two-level atoms, are integrable and can be diagonalized exactly [2–4] by means
of the Bethe-ansatz technique [5, 6]. In the present letter, we study a quantum system
of polaritons (‘photons in a medium’) [7] interacting with a single two-level atom placed
within a frequency dispersive medium. The polariton–atom coupling isnon-local and leads
to a non-local effective polariton–polariton coupling. Therefore, the integrability of the
‘polaritons+ atom’ system is highly questionable and requires a thorough analysis.

To diagonalize the model Hamiltonian, we introduceauxiliary particles and show that
a many-particle scattering process is factorized into two-particle ones. The two-polariton
factorization of many-polariton scattering ishidden and is manifested only in the limit of
large interpolariton separations.

In the dipole resonance (rotating wave) approximation [1] the model Hamiltonian is
written as

H = ω12

∑
σ

Xσσ +
∑
ασ

∫ ∞

0

dk

2π
εα(k)p

+
ασ (k)pασ (k)

−
∑
ασ

∫ ∞

0

dk

2π

√
γ (k)

( |�− εα(k)|
ε2(k)− ε1(k)

)1/2 [
pασ (k)Xσ0 +X0σp

+
ασ (k)

]
. (1)

Here the indexα = 1, 2 enumerates the polariton branches of the frequency dispersive
medium with the spectral functions

ε1(k) = 1
2

[
(�+ k)−

√
(�− k)2 + 4k1

]
ε2(k) = 1

2

[
(�+ k)+

√
(�− k)2 + 4k1

]
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andγ (k) = 4k3d2/3, whereω12 andd are respectively the frequency and the dipole moment
of the atomic transition. The operatorspασ (k) with the commutation relations

[pασ (k), p
+
α′σ ′(k

′)] = 2πδαα′δσσ ′δ(k − k′)

describe the electro-dipole harmonics [8] of the entire polariton field. The ‘colour’ index
σ = 1, 2, 3 enumerates both the three degenerate states of the excited atomic level and
the electro-dipole harmonics of the polariton field with three possible projections of the
angular momentumm = −1, 0, 1 [4]. The atom is described by the Hubbard operatorsXab,
a, b = (0, σ ) with the commutator

[Xab,Xcd ] = δcbXad − δadXcb

where the index 0 stands for the atomic ground state. The polariton frequency varies from
zero to�−1 within the lower branch and from� to +∞ within the upper branch. The
frequency interval of the width1 between� − 1 and � is forbidden for propagating
polariton modes.

Introducing the energy variableε by the expressionk = ε(�− ε)/(�−1− ε) and the
polariton operators on the ‘energy scale’

pσ (εα(k)) =
(

ε2(k)− ε1(k)

|�−1− εa(k)|
)1/2

pασ (k) [pσ (ε), p
+
σ ′(ε

′)] = 2πδσσ ′δ(ε − ε′)

one can turn from integrationWRT k in (1) to integrationWRT ε to obtain

H = ω12

∑
σ

Xσσ +
∑
σ

∫
C

dε

2π

{
ε p+

σ (ε)pσ (ε)− √
γ z(ε) [pσ (ε)Xσ0 +X0σp

+
σ (ε)]

}
. (2)

The atomic form factorz(ε) = (�− ε)2/[(�−1− ε)2 + κ2] reflects the growth ofγ (k)
and the density of polariton states near the upper edge of the lower polariton branch. The
constantκ is introduced to account for relaxation processes in the medium. In accordance
with the resonance approximation, here we have replacedγ (ε) → γ = 4ω3

12d
2/3 = constant

and extended the lower limit of integration to−∞. Thus, the integration contour in (2)
consists of two semi-infinite intervals,C = (−∞, �−1]

⋃
[�,∞).

The one-particle eigenstates of the model

|λ〉 =
∑
σ

βσ

[
g(λ)Xσ0 +

∫
C

dε

2π
f (ε|λ)p+

σ (ε)

]
|0〉 (3)

where theβσ are arbitrary constants and the vacuum state is defined by

X0σ |0〉 = pσ (ε)|0〉 = 0

are found from the Schrödinger equation

(ε − λ)f (ε|λ)− √
γ z(ε)g(λ) = 0 (λ− ω12)g(λ)+ √

γ

∫
C

dε

2π
z(ε)f (ε|λ) = 0 . (4)

Their spectrum consists of both the continuous spectrum with eigenenergyλ lying outside
the gap:

f (ε, λ) = 2πz(λ)δ(ε − λ)+ √
γ

z(ε)

ε − λ− i0
g(λ) (5a)

g(λ) = −
√
γ z2(λ)

λ− ω12 +6(λ)
6(λ) = γ

∫
C

dε

2π

z2(ε)

ε − λ− i0
(5b)
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and the discrete mode:

fd(ε|3) = √
γ
z(ε)

ε −3
gd(3) 6d(3) = γ

∫
C

dε

2π

z2(ε)

ε −3
Im6d(3) = 0. (6a)

The eigenenergy of the discrete state3 lies within the gap and is found as a root of the
equation

3− ω12 +6(3) = 0 3 ∈ [�−1,�] . (6b)

The modulus of arbitrary value gd(3) is determined from the normalization condition
〈3|3〉 = 1.

For what follows, it is convenient to rewrite equation (3) in terms of the Fourier
transform of the polariton operators and wavefunctions:

p+
σ (x) =

∫ ∞

−∞

dε

2π
p+
σ (ε)e

−iεx f (x|λ) =
∫ ∞

−∞

dε

2π
f (ε|λ)eiεx .

We then obtain

|λ〉 =
∑
σ

βσ

[
g(λ)Xσ0 +

∫ ∞

−∞
dx ψ(x|λ)p+

σ (x)

]
|0〉 ψ(x|λ) =

∫
C

dε

2π
f (ε|λ)eiεx .

(7)

Note that the polariton wavefunction in the auxiliaryx-spaceψ(x) is not equal to the
functionf (x), due to the existence of the gap. Therefore we introduce the auxiliary function
φ(ε|λ) = z−1(ε)f (ε|λ), and representψ(x) as

ψ(x|λ) =
∫ ∞

−∞
dy u(x − y)φ(y|λ) u(x) =

∫
C

dε

2π
z(ε)eiεx . (8)

In the auxiliary space, the Schrödinger equation for the wavefunction of the auxiliary particle
takes the form

(−i∂x − λ) φ(x|λ) = √
γg(λ)δ(x). (9)

Equation (9) describes the auxiliary particle propagating in the positive direction of the
x-axis and scattering on the point-like potential. Its general solution is given by

φ(x|λ) = h(λ)− (i/2)sgn(x)

h(λ)+ i/2
eiλx h(λ) = λ− ω12 +6′(λ)

γ z2(λ)
(10)

where sgn(x) = (−1, x < 0; 0, x = 0; 1, x > 0) and6′(λ) = Re6(λ).
We look forN -particle eigenstates in the form

|9N 〉 =
∑
σ1,...σN

[∫ ∞

−∞
dx1 · · · dxN 9σ1,...,σN (x1, . . . , xN)

N∏
j=1

p+
σj
(xj )

+
∫ ∞

−∞
dx1 · · · dxN−1 Jσ1,...,σN (x1 . . . , xN−1)XσN0

N−1∏
j=1

p+
σj
(xj )

]
|0〉 (11)

where the polariton wavefunctions are also expressed in terms of the wavefunctions of the
auxiliary particles:

9σ1,...,σN (x1, . . . , xN) =
∫ ∞

−∞
dy1 · · · dyN 8σ1,...,σN (y1, . . . , yN)

N∏
j=1

u(xj − yj ) (12a)

Jσ1,...,σN (x1, . . . , xN−1) =
∫ ∞

−∞
dy1 · · · dyN−1 Gσ1,...,σN (y1, . . . , yN−1)

N−1∏
j=1

u(xj − yj ) . (12b)
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In the two-particle case, the auxiliary functions obey the Schrödinger equation

(−i∂x1 − i∂x2 − E)[8σ1σ2(x1, x2)+8σ2σ1(x2, x1)]

= √
γ [δ(x1)Gσ1σ2(x2)+Gσ2σ1(x1)δ(x2)] (13a)

(−i∂x + ω12 − E)Gσ1σ2(x) = √
γ

∫ ∞

−∞
dx ′ v(x ′)[8σ1σ2(x, x

′)+8σ2σ1(x
′, x)] (13b)

where

v(x) =
∫
C

dε

2π
z2(ε) e−iεx .

We look for a solution of (13) in the form

8σ1σ2(x1, x2|λ1, λ2) =
∑
σ ′

1σ
′
2

A
σ ′

1σ
′
2

σ1σ2(x1, x2)φσ ′
1
(x1|λ1)φσ ′

2
(x2|λ2) (14a)

Gσ1σ2(x|λ1, λ2) =
∑
σ ′

1σ
′
2

[
A
σ ′

1σ
′
2

σ1σ2(x)φσ ′
1
(x|λ1)gσ ′

2
(λ2)+ A

σ ′
1σ

′
2

σ1σ2(−x)gσ ′
1
(λ1)φσ ′

2
(x|λ2)

]
(14b)

whereE = λ1 + λ2.
In the unicolour case (σ1 = σ2), the functionA(x) is found to be

A(x1, x2|λ1, λ2) = 1 + i

h(λ1)− h(λ2)
sgn(x1 − x2) .

Thus the particle–particle scattering is described by the discontinuous jump at the
permutation of particle coordinates, while the corresponding polariton wavefunctions (12)
are continuous. In the general colour case, the two-particle scattering matrix is found to be

S
σ ′

1σ
′
2

σ1σ2 (λ1, λ2) = a(λ1, λ2)+ b(λ1, λ2)P
σ ′

1σ
′
2

σ1σ2 (15a)

where

a(λ1, λ2) = h(λ1)− h(λ2)

h(λ1)− h(λ2)− iγ
b(λ1, λ2) = iγ

h(λ1)− h(λ2)− iγ
. (15b)

and P
σ ′

1σ
′
2

σ1σ2 = δσ1σ
′
2
δσ2σ

′
1

is the permutation operator. The two-particle scattering matrix is
obviously a solution of the Yang–Baxter equations [5, 6, 9], and hence, the many-particle
scattering is factorized into two-particle ones. The two-polariton factorization of the many-
polariton scattering is hidden due to non-local coupling in the polariton system, and becomes
visible only in the limit of large interpolariton separations.

To find the spectrum of the system, we have to put the system in a ‘box’ of sizeL and to
impose the periodic boundary conditions (PBC) on the polariton wavefunction. ThePBC lead
to a hierarchy of the Bethe-ansatz equations, which can be obtained from the hierarchy of
the Bethe-ansatz equations in the colour Dicke model [4] by introducing of the ‘rapidities’
hj ≡ h(λj ) (10). For the sake of simplicity, we confine ourselves here to the unicolour
case, where all the polaritons have the same colour. Then, the Bethe-ansatz equations are
given by

eik(λj )L
h(λj )− i/2

h(λj )+ i/2
= −

N∏
l=1

h(λj )− h(λl)− i

h(λj )− h(λl)+ i
E =

N∑
j=1

λj . (16a)
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Here, the polariton wavevectork(λ) = λ(�−λ)/(�−1−λ) describes the spatial behaviour
of wavefunctions. If one of the polaritons is bound to the atom, equations (16a) take the
form

eik(λj )L
h(λj )− i/2

h(λj )+ i/2

h(λj )+ i

h(λj )− i
= −

N−1∏
l=1

h(λj )− h(λl)− i

h(λj )− h(λl)+ i
E = 3+

N−1∑
j=1

λj . (16b)

In the limit L → ∞, apart from real solutions, equations (16) admit complex ones, in
which rapiditieshj are grouped into ‘strings’:

h
(α,n)
j = h(α,n) + 1

2i(n+ 1 − 2j) j = 1, . . . , n (17)

whereh(α,n) is a common real part, andn is the order of a string. The relationshiph(λ) is
obtained by the analytical continuation of (10) in the complexλ plane:

h(λ) =
{

[γ z2(λ)]−1[λ− ω12 +6(λ)− (iγ /2)z2(λ)] Im λ > 0

[γ z2(λ)]−1[λ− ω12 +6(λ)+ (iγ /2)z2(λ)] Im λ < 0 .
(18)

For hj lying far from the real axis, one getshj ∼ (λj − ω12)/γ , and the parametersλj are
also grouped into a string structure similar to (17),λj ∼ λ0 + i(γ /2)(n+ 1 − 2j).

Even strings(n = 2k) obviously exist at arbitrary valueh(α,n). In an odd string
(n = 2k+1), one of the rapidities, sayh(µ), lies on the real axis, therefore the corresponding
wavefunctionφ(x|µ) vanishes forµ lying within the gap. The only exception isµ = 3,
where3 is the eigenenergy of the discrete mode. In this case, one can build an odd string:

hj = 1
2i(n+ 1 − 2j) n = 2k + 1 (19)

which is pinned to the atom and describes the many-polariton–atom bound state, in which
the radiation and the medium polarization are localized in the vicinity of the atom.

We hope that the hidden integrability, which has been demonstrated here with the Dicke
model in a dispersive medium, can also be found in other physical systems with non-local
coupling. The results obtained also bring up the intriguing question: could one construct an
integrable system with non-local coupling using an integrable system with local coupling
as an auxiliary one?

VR is grateful to the Centre for Chemical Physics at the University of Western Ontario for
hospitality and support. MS is thankful to the NSERC of Canada for financial support in
the form of a research grant.
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