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LETTER TO THE EDITOR

Hidden integrability of a quantum system with non-local
coupling

Valery | Rupasoyi and M Singlj

Centre for Chemical Physics and Department of Physics, University of Western Ontario, London,
Ontario, Canada N6A 3K7

Received 17 January 1996

Abstract. A system of polaritons interacting with a two-level atom placed within a frequency
dispersive medium is proved to be integrable, despite a non-local effective polariton—polariton
coupling. The two-polariton factorization of a many-polariton scattering process is hidden and
is manifested only in the limit of large interpolariton separations.

The standard Dicke and Bloch—Maxwell models [1], which describe a system of photons
coupled to two-level atoms, are integrable and can be diagonalized exactly [2—4] by means
of the Bethe-ansatz technique [5, 6]. In the present letter, we study a quantum system
of polaritons (‘photons in a medium’) [7] interacting with a single two-level atom placed
within a frequency dispersive medium. The polariton—atom couplimpislocal and leads
to a non-local effective polariton—polariton coupling. Therefore, the integrability of the
‘polaritons+ atom’ system is highly questionable and requires a thorough analysis.

To diagonalize the model Hamiltonian, we introdusmexiliary particles and show that
a many-particle scattering process is factorized into two-particle ones. The two-polariton
factorization of many-polariton scattering lisdden and is manifested only in the limit of
large interpolariton separations.

In the dipole resonance (rotating wave) approximation [1] the model Hamiltonian is
written as

* dk
H=00) Xpr+ 3 fo o €Dy (P )

€2(k) — ex(k)

Here the indexa = 1,2 enumerates the polariton branches of the frequency dispersive
medium with the spectral functions
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andy (k) = 4k3d?/3, wherew, andd are respectively the frequency and the dipole moment
of the atomic transition. The operatops, (k) with the commutation relations

[p(xa (k)a p;g'(k,)] = 2775(10/60(7’8(]( - k,)

describe the electro-dipole harmonics [8] of the entire polariton field. The ‘colour’ index

o = 1,2, 3 enumerates both the three degenerate states of the excited atomic level and
the electro-dipole harmonics of the polariton field with three possible projections of the
angular momentum: = —1, 0, 1 [4]. The atom is described by the Hubbard operaiqrs

a, b = (0, o) with the commutator

[Xabv Xcd] = 8cp Xad — 8aaXeb

where the index 0 stands for the atomic ground state. The polariton frequency varies from
zero to2 — A within the lower branch and fror to +oo within the upper branch. The
frequency interval of the widthA betweenQ — A and  is forbidden for propagating
polariton modes.

Introducing the energy variableby the expressioh = ¢(Q2 — €)/(2 — A — ¢) and the
polariton operators on the ‘energy scale’

ealk) — (k) \? ®
Q-A—abl)
one can turn from integratiowRrT & in (1) to integrationwRT ¢ to obtain

Po (Ea(k)) = < [pa (€), P;r/(f/)] = 277500’8(6 - 6/)

d
szlzzxaﬁzfci{ep:(e)pa(e)—ﬁz@) [Po(€)Xo0+ Xoopf (O]}, (2)

The atomic form factor (e) = (2 — €)?/[(Q — A — €)% + «?] reflects the growth of/ (k)
and the density of polariton states near the upper edge of the lower polariton branch. The
constanty is introduced to account for relaxation processes in the medium. In accordance
with the resonance approximation, here we have replaced— y = 4w3,d?/3 = constant
and extended the lower limit of integration teco. Thus, the integration contour in (2)
consists of two semi-infinite interval§; = (—oo, @ — A]|J[€2, 00).

The one-particle eigenstates of the model

d
|A) = ;:30 [Q(X)Xgo + /C Zfo(EI?»)Pi(G)} 0) 3

where theg, are arbitrary constants and the vacuum state is defined by
Xo0s10) = ps(€)|0) =0

are found from the Schdinger equation

d
(e =) f(eld) — Vyz(e)9gr) =0 (A — w12)9(1) + «/V/C iZ(E)f(élk) =0. (4

Their spectrum consists of both the continuous spectrum with eigenehdygyg outside
the gap:

fle.n) =2mz(h)8(e —2) + ﬁ% 9() (52)
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and the discrete mode:
_ z(€) _ de z2%(e) _
I N e IO TES R I SR LIS EL M

The eigenenergy of the discrete statelies within the gap and is found as a root of the
equation

A—wp+ 2(A) =0 Ae[Q-A,Q]. (6b)
The modulus of arbitrary value,gA) is determined from the normalization condition
(A|A) = 1.
For what follows, it is convenient to rewrite equation (3) in terms of the Fourier
transform of the polariton operators and wavefunctions:

4 _ oo $ + —iex _ /00 E jex
pE) = / ppitee fai = [ 35 pemde

oo

We then obtain
00 d .
[A) = Zﬁa [Q(A)Xao +/ dx w(XI)»)pI(x)] |0) Y(x|A) = /C if(q)\)e'”_
(7)

Note that the polariton wavefunction in the auxiliakyspacey (x) is not equal to the
function f(x), due to the existence of the gap. Therefore we introduce the auxiliary function
¢ (€|r) = z71(e) f(€|r), and represeny (x) as

Pl = / dy uCe — POIR)  ul) = / e, ®
—00 Cc &

In the auxiliary space, the Sdidinger equation for the wavefunction of the auxiliary particle
takes the form

(=i0y — 1) @ (x]2) = /y9(W)é(x). 9)
Equation (9) describes the auxiliary particle propagating in the positive direction of the
x-axis and scattering on the point-like potential. Its general solution is given by

h(x) — (i/2)sgnx) A — w2+ X0
A) = _ e h()) = ——— 10
¢ (x|1) 0 172 ™) 200 (10)
where sgiix) = (-1, x < 0;0,x =0; 1, x > 0) andX’(A) = ReZ(1).
We look for N-particle eigenstates in the form
e8] N
[Wy) = Z |:/ dg---dey oo, op (X1, .., XN)HP;(XJ‘)
01,...0N -0 j=1
00 N-1
+ / ey diyog Jop, oy (1. .., Xv—1) Xoy0 l_[ P;r, (Xj):| |0) (11)
o B

where the polariton wavefunctions are also expressed in terms of the wavefunctions of the
auxiliary particles:

00 N
oy, oy (X215 ooy XN) = / dyy - dyy Doy, 1 - yw) [ s = ) (12a)
o PR

N-1

oy (X1, .. Xyo1) = / dyi---dyn—1 Goy,.on (V15 -+ -5 YN-1) 1_[ u(xj —y;). (12o)
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In the two-particle case, the auxiliary functions obey the 8dimger equation
(_i8X1 - iaxz - E)[cbﬂlﬂz(xla x2) + CD(Tz(Tl(xZ’ xl)]

= VYV [8(x1) G0, (x2) + Goyoy (x1)8(x2)] (13a)

(_iax + w12 — E)Galag(-x) = «/7/ dx/ U(x/)[d)alaz(xs xl) + q)ozal(x/s )C)] (13b)

where

21

We look for a solution of (13) in the form

v(x) =/ de Z2(e) e’ .
C

D0, (X1, X2|A1, A2) = Y Agios (X1, X2) o) (X1 A1) b (x2|A2) (14a)

T
0103

Goios (X131, 32) = D [ ATht (00bog (X A0y (2) + AThot (—2)Go; G)og (2| (240)

T
0103

whereE = A1 + Ao.
In the unicolour casesf = o7), the functionA(x) is found to be

[
A(xg, x2|A1,A2) =14+ ——————————sQn(x; — x2) .
h(x1) — h(i2)
Thus the particle—particle scattering is described by the discontinuous jump at the
permutation of particle coordinates, while the corresponding polariton wavefunctions (12)
are continuous. In the general colour case, the two-particle scattering matrix is found to be

- ',
0103 0103

Soros (A1, A2) = a(A1, A2) + b(A1, A2) Pojs; (15a)
where
h(Xk1) — h(ko) iy
A, ho) = : b(h, ha) = . 150
B2 =160 —hoe —iy T T 60 Thow — iy (1)

'/
0102

and Pojo; = 8610480,0; IS the permutation operator. The two-particle scattering matrix is
obviously a solution of the Yang—Baxter equations [5, 6, 9], and hence, the many-patrticle
scattering is factorized into two-particle ones. The two-polariton factorization of the many-
polariton scattering is hidden due to non-local coupling in the polariton system, and becomes
visible only in the limit of large interpolariton separations.
To find the spectrum of the system, we have to put the system in a ‘box’ of.siwrel to
impose the periodic boundary conditiom®¢) on the polariton wavefunction. Thrsclead
to a hierarchy of the Bethe-ansatz equations, which can be obtained from the hierarchy of
the Bethe-ansatz equations in the colour Dicke model [4] by introducing of the ‘rapidities’
h; = h(x;) (10). For the sake of simplicity, we confine ourselves here to the unicolour
case, where all the polaritons have the same colour. Then, the Bethe-ansatz equations are
given by
dkopr hO) =1/2. _ lﬁ[ h(Aj) — h(h) —i . i*
L — _ = - (16a)
=1 =1

h(h)+i/2 h(g) —h(hy) +i .
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Here, the polariton wavevectdri) = A(Q2—1)/(2— A —1) describes the spatial behaviour
of wavefunctions. If one of the polaritons is bound to the atom, equations (h&e the
form

ghor HO) =172 WG +1_ ﬁlw E=A+ Nz_lx_,..

: = : (16b)
h(Aj) +i/2 h(xj) —i h(Aj) — h(y) +i

=1
In the limit L — oo, apart from real solutions, equations (16) admit complex ones, in
which rapiditiesh; are grouped into ‘strings’:

PED = R 4 i 41— 2j) j=1....n (17)

whereh @™ is a common real part, andis the order of a string. The relationshig:) is
obtained by the analytical continuation of (10) in the compleplane:

B Y22 A — w12 + (L) — (iy/2)22(M)] Imx >0
| 221 — w2+ B + (iy/2220)] Ima < 0.

For 4; lying far from the real axis, one gets ~ (A; — w12)/y, and the parameters are
also grouped into a string structure similar to (%)~ xo +i(y/2)(n + 1 — 2j).

Even strings(n = 2k) obviously exist at arbitrary valué®™. In an odd string
(n = 2k+1), one of the rapidities, say(), lies on the real axis, therefore the corresponding
wavefunctiong (x|u) vanishes foru lying within the gap. The only exception js = A,
whereA is the eigenenergy of the discrete mode. In this case, one can build an odd string:

hj = 3i(n +1-2j) n=2k+1 19)

which is pinned to the atom and describes the many-polariton—atom bound state, in which
the radiation and the medium polarization are localized in the vicinity of the atom.

We hope that the hidden integrability, which has been demonstrated here with the Dicke
model in a dispersive medium, can also be found in other physical systems with non-local
coupling. The results obtained also bring up the intriguing question: could one construct an
integrable system with non-local coupling using an integrable system with local coupling
as an auxiliary one?

h() (18)
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